123 research outputs found

    The adsorption structure of furan on Pd(1 1 1)

    Get PDF
    The structure of molecular furan, C4H4O, on Pd(1 1 1) has been investigated by O K-edge near-edge X-ray absorption fine structure (NEXAFS) and C 1s scanned-energy mode photoelectron diffraction (PhD). NEXAFS shows the molecule to be adsorbed with the molecular plane close to parallel to the surface, a conclusion confirmed by the PhD analysis. Chemical-state specific C 1s PhD data were obtained for the two inequivalent C atoms in the furan, the α-C atoms adjacent to the O atom, and the ÎČ-C atoms bonded only to C atoms, but only the PhD modulations for the α-C emitters were of sufficiently large amplitude for detailed evaluation using multiple scattering calculations. This analysis shows the α-C atoms to be located approximately 0.6 Å off-atop surface Pd atoms with an associated C–Pd bondlength of 2.13 ± 0.03 Å. Two alternative local geometries consistent with the data place the O atom in off-atop or near-hollow locations, and for each of these local structures there are two equally-possible registries relative to the fcc and hcp hollow sites. The results are in good agreement with earlier density functional theory calculations which indicate that the fcc and hcp registries are equally probable, but the PhD results fail to distinguish the two distinct local bonding geometries

    A structural study of a C3H3 species coadsorbed with CO on Pd(1 1 1)

    Get PDF
    The combination of chemical-state-specific C 1s scanned-energy mode photoelectron diffraction (PhD) and O K-edge near-edge X-ray absorption fine structure (NEXAFS) has been used to determine the local adsorption geometry of the coadsorbed C3H3 and CO species formed on Pd(1 1 1) by dissociation of molecular furan. CO is found to adopt the same geometry as in the Pd(1 1 1)c(4 × 2)-CO phase, occupying the two inequivalent three-fold coordinated hollow sites with the C–O axis perpendicular to the surface. C3H3 is found to lie with its molecular plane almost parallel to the surface, most probably with the two ‘outer’ C atoms in equivalent off-atop sites, although the PhD analysis formally fails to distinguish between two distinct local adsorption sites

    Adsorption bond length for H<sub>2</sub>O on TiO<sub>2</sub>(110): A key parameter for theoretical understanding

    Get PDF
    Scanned-energy mode photoelectron diffraction results show the adsorption site of molecular water on TiO2(110) to be atop under-coordinated surface Ti atoms, confirming the results of total energy calculations and STM imaging. However, the Ti-Owater bond length is 2.21±0.02 Å, much longer than Ti-O bond lengths in strongly chemisorbed species on this surface, but significantly shorter than found in most total energy calculations. The need for theory to describe this weak bond effectively may be a key factor in the controversial problem of understanding this important surface reaction system

    Adsorption and temperature-dependent decomposition of SO<sub>2</sub> on Cu(100) and Cu(111): A fast and high-resolution core-level spectroscopy study

    Get PDF
    The adsorption and temperature-dependent decomposition of SO2 on Cu(100) and Cu(111) have been studied by fast and high-resolution core-level photoemission. The analysis of the S 2p and O 1s data shows that molecular SO2 adsorption dominates at 170 K. On heating the SO2-covered surfaces to about room temperature, SO2 decomposes into SO+O+S. On further heating SO+O recombine to form SO2, which is the only species detected in corresponding temperature-programmed desorption (TPD) experiments. From the temperature- (time-) dependent S and O coverages a ‘‘TPD curve’’ can be constructed

    The local adsorption structure of benzene on Si(001)-(2 × 1): a photoelectron diffraction investigation

    Get PDF
    Scanned-energy mode C 1s photoelectron diffraction has been used to investigate the local adsorption geometry of benzene on Si(001) at saturation coverage and room temperature. The results show that two different local bonding geometries coexist, namely the 'standard butterfly' (SB) and 'tilted bridge' (TB) forms, with a composition of 58 ± 29% of the SB species. Detailed structural parameter values are presented for both species including Si–C bond lengths. On the basis of published measurements of the rate of conversion of the SB to the TB form on this surface, we estimate that the timescale of our experiment is sufficient for achieving equilibrium, and in this case our results indicate that the difference in the Gibbs free energy of adsorption, ΔG(TB)−ΔG(SB), is in the range −0.023 to +0.049 eV. We suggest, however, that the relative concentration of the two species may also be influenced by a combination of steric effects influencing the kinetics, and a sensitivity of the adsorption energies of the adsorbed SB and TB forms to the nature of the surrounding benzene molecules

    Photoelectron diffraction study of ultrathin Fe films on Cu{111}

    Get PDF
    Using photoelectron diffraction in the scanned-energy mode we show that at 300 K iron grows pseudomorphically on Cu{111} up to a thickness of about two equivalent monolayers. The Fe-Cu layer separation is 1.99 Å. Above this thickness the film becomes bcc with {110} orientation and is aligned such that the 〈111〉 rows are parallel to the 〈110〉 rows of the fcc{111} surface (Kurdjumov-Sachs orientation). The Fe-Fe first-layer separation is 1.95 Å

    Photoelectron diffraction investigation of the structure of the clean TiO2(110)(1×1) surface

    Get PDF
    The surface relaxations of the rutile TiO2(110)(1×1) clean surface have been determined by O 1 s and Ti 2p3∕2 scanned-energy mode photoelectron diffraction. The results are in excellent agreement with recent low-energy electron diffraction (LEED) and medium energy ion scattering (MEIS) results, but in conflict with the results of some earlier investigations including one by surface x-ray diffraction. In particular, the bridging O atoms at the surface are found to relax outward, rather than inward, relative to the underlying bulk. Combined with the recent LEED and MEIS results, a consistent picture of the structure of this surface is provided. While the results of the most recent theoretical total-energy calculations are qualitatively consistent with this experimental consensus, significant quantitative differences remain

    Quantitative determination of the local structure of thymine on Cu(1 1 0) using scanned-energy mode photoelectron diffraction

    Get PDF
    The local adsorption structures of the surface species formed by interaction of thymine with a Cu(1 1 0) surface at room temperature, and after heating to not, vert, similar530 K, have been investigated. Initial characterisation by soft-X-ray photoelectron spectroscopy and O K-edge near-edge X-ray absorption fine structure (NEXAFS) indicates the effect of sequential dehydrogenation of the NH species and provides information on the molecular orientation. O 1s and N 1s scanned-energy mode photoelectron diffraction shows the species at both temperatures bond to the surface through both carbonyl O atoms and the deprotonated N atom between them, each bonding atom adopting near-atop sites on the outermost Cu surface layer. The associated bondlengths are 1.96 ± 0.03 Å for Cu–N and 1.91 ± 0.03 Å and 2.03 ± 0.03 Å for the two inequivalent Cu--O bonds. The molecular plane lies almost exactly in the close-packed View the MathML source azimuth, but with a tilt relative to the surface normal of approximately 20°. Heating to not, vert, similar530 K, or deposition at this temperature, appears to lead to dehydrogenation of the second N atom in the ring, but no significant change in the adsorption geometry

    Adsorption site and orientation of pyridine on Cu{110} determined by photoelectron diffraction

    Get PDF
    The local adsorption geometry of pyridine on Cu{110} has been determined quantitatively using photoelectron diffraction in the scanned-energy mode. At high coverages the molecule adsorbs nearly atop a Cu atom in the close-packed rows with a N–Cu bond length of 2.00 Å. Moreover, the Cu–N axis and the molecular (C2) axis are inclined by 8° and 20°, respectively, to the surface normal. The result shows that not only the adsorption site of the emitter (in this case the N atom) but also the position of relatively light scatterers (the C atoms) can be determined by photoelectron diffraction
    • 

    corecore